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Short Note

A solution for TM-mode plane waves incident on a

two-dimensional inhomogeneity

K. H. Lee* and H. F. Morrison}

INTRODUCTION

Quantitative interpretation of magnetotelluric (MT) surveys
depends at present on the availability of an efficient forward
modeling algorithm. To date, two major numerical techniques
have been used to obtain the scattered fields from buried inho-
mogeneities in plane-wave fields: methods solving the gov-
erning differential equation which generally uses a finite-
element or finite-difference approach, and methods which
solve an integral-equation formulation of the problem.

For two-dimensional (2-D) inhomogeneities a solution for
incident fields with the electric field parallel to the strike of the
inhomogeneity (TE mode solution) was developed by Hoh-
mann (1971) using the integral-equation approach. For a per-
fect conductor an integral formulation, for surface scattering
currents, for the TM mode (magnetic field parallel to the
strike of the inhomogeneity) was developed by Parry (1969).
General 2-D solutions in the presence of an arbitrary mode
plane wave (mixed TE-TM) were obtained by Ryu (1970),
Swift (1971), and Rijo (1977) using either a finite-element or
finite-difference technique.

To our knowledge, the TM integral-equation solution for
the general case has not been presented. The solution present-
ed here thus completes the analysis for the scattering of arbi-
trary mode plane waves from 2-D inhomogeneities using the
integral equation approach. Apart from significant compu-
tational advantages in forward modeling of simple geologic
bodies for MT analysis, this solution is important for evalu-
ating the results of alternate numerical methods used for more
complicated geologic models. It is becoming evident that, for
many of the current numerical modeling schemes, there are no
convincing checks on the accuracy of the solution. It is im-
perative, therefore, that several solutions be obtained by differ-
ent methods and that they be compared until confidence is
attained in these solutions.

FORMULATION OF 2-D INTEGRAL EQUATION

Maxwell’s equations

V x E = —jopH, 1

and
V x H =(c + jog)E + J°, )

in the presence of an impressed current source J°, yield

VxVxE—KE-= —jopl, %)
where
k? = w’pe — joop.

Introducing a 2-D Green’s tensor appropriate for the geome-
try shown by Figure 1 that satisfies

V x V x GHp/p) — ki (G p/p) =18(p — 9, (4

and linearly combining equations (3) and (4) using the pro-
cedure described by Weidelt (1975), we obtain the following
2-D integral equation for the electric field E(E, , E,):

E(p) = Efp) — jop J Gip/p) - Ac(p)E(p) ds.  (5)
S

Ei(p) is the incident field at p = (x? + z*)!/? that would exist in
the absence of the inhomogeneity. The symbol | in equation
(4) is a 2-D identity matrix, and &( - ) is the Dirac delta func-
tion. The constant —jopAc is defined by k? — k?, where k, is
the propagation constant representing the layered medium.
The term AcE is called the scattering current (Harrington,
1961).

The numerical solution for E in equation (5) is initiated by
dividing the inhomogeneous region S into a finite number of
rectangular cells (Figure 1), such that a constant electric-field
intensity can be assumed in each cell. With this assumption
the integral equation is reduced to a numerically equivalent
matrix form as

KE = E (6)
where the elements of K are given by
K,n = jouAc, TE +35,.; £,m=1,N.

The term I'%,, is defined as

I, = J G p,/p') ds,
Sm
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“1G. 1. A simulation of a two-dimensional inhomogeneity by
N rectangular cells.
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“IG. 2. Convergence test for the integral-equation numerical
olution in terms of impedance phase. The dotted lines repre-
ent integral-equation solutions with a varying number of cells
ised.

and it symbolically means that it is the integral of GE over the
area occupied by the mth cell evaluated at the center of the
/th cell. The symbol §,,, is the 2-D Kronecker delta function,
and N is twice the total number of cells used.

Once we find the electric fields within the inhomogeneity by
solving the system of equations [equation (6)], the electric
fields at positions away from the inhomogeneity may be calcu-
lated using essentially the same equation [equation (5)]. In
this case the field position p is usually on or above the earth-
air interface, and therefore different Green’s functions should
be used. For the magnetic fields, we modify equation (5) into,
by virtue of equation (1),

H(p) = Hi(p) + J V x GEp/p’) - Ac(p"E(p’) ds. (7
S

The computations of Green’s functions G£ and V x GF fre-
quently require time-consuming numerical integrations in har-
monic space (k, — x). A detailed description of those necessary
Green’s functions and numerical integrations involved was
given by Lee and Morrison (1984). The numerical integration
usually takes more than half of the total computing time re-
quired for a final solution.

NUMERICAL RESULTS AND CONCLUSION

The numerical solution developed here is compared to the
one obtained by Ryu (1970} using the finite-element method.
The model used is a half-space in which a rectangular conduc-
tor of 200 m x 50 m is buried 50 m deep to the top of the
conductor. The resistivities used are 1 Q- m for the conductor
and 100 Q- m for the half-space. At the frequency of 8 Hz, the
finite-element solution was obtained on a grid in which the
conductor is simulated by 16 cells of equal size (25 m x 25 m).
At this frequency the cell size used for the finite-element solu-
tion is considered fine enough, with its skin depth of 177 m,
for the accurate numerical solution. Compared to the finite-
element solution, a number of integral-equation solutions were
obtained using increasingly more cells for the conductor. The
result was plotted (Figure 2) in terms of the impedance phase.
The integral-equation solution converges to the finite-element
solution as the number of cells used increases from 4 cells to
48 cells. The convergence rate is relatively slow compared to
the one for the TE-mode solution (Hohmann, 1971), in which
a cell size of a quarter of the skin depth would result in a
reasonably good numerical solution. The slow convergence of
the TM-mode numerical solution seems to have resulted from
the assumption we used, in which electric fields are assumed
constant in a cell. Unlike the TE-mode situation where there
is no charge, the discontinuous normal electric fields at cell
boundaries create charges. The Hertz potential of a constant
current, by which the electromagnetic field is computed here,
does not include potentials due to thus created charges and
eventually affects the quality of the numerical solution. The
effect of the cell boundary charges can be somewhat reduced
through the approach in which an explicit scalar potential is
employed to represent fields due to charges. Hohmann and
Ting (1978) used a scheme by which the concentrated bound-
ary charges are uniformly distributed over a volume extending
from the center of one cell to the center of the next cell.

The next model compared is a conductive dike with varying
dip angles as shown in Figure 3. A dipping boundary of the
conductor is simulated by stacking small rectangular conduc-
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FiG. 3. Comparison between solutions for a dipping conduc-
tor. The solid line represents apparent resistivity obtained
using finite-element method. o is the dip of the conductor
simulated.

tors in a way that preserves the overall dip angle. For fre-
quencies of 8 and 100 Hz, the finite-element solution and the
integral-equation solution result in identical apparent resistivi-
ty profiles when the conductor (20 m x 50 m) is vertical. With
the dip angle of 45 degrees, however, a maximum of 10 per-
cent difference in peak-to-peak apparent resistivity is observed
for both frequencies. For the integral-equation solutions the
conductor was simulated by 10 cells of equal size—10 m x 10
m. Considering the slow convergence rate illustrated by

Figure 2, the numerical integral-equation solution for the dip-
ping conductor, with its increased boundary surface, may not
have reached its full convergence.

Using the integral equation for the modeling of electro-
magnetic scattering limits work to a model finite in extent in
an otherwise layered half-space. It is unfortunate that the
available Green’s functions are limited to those for the layered
half-space. Ironically, however, this geometrical restriction
offers the integral-equation technique its major advantage; it
is necessary to solve for the scattering current only in the
inhomogeneous region.
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